Quiz 12

Name
(8 points) Let $F(x, y)=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}$,
(a) Show that $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
(b) Show that $\int_{C} \mathbf{F} \cdot \boldsymbol{d} \boldsymbol{r}$ is NOT independent of path. Does this contradict Theorem 6? [Hint: Compute $\int_{C_{1}} \mathbf{F} \cdot \boldsymbol{d r}$ and $\int_{C_{2}} \mathbf{F} \cdot \boldsymbol{d} \boldsymbol{r}$, where C_{1} and C_{2} are the upper and lower halves of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $\left.(-1,0)\right]$.
$C_{\text {Theorem 6: Let }} F=P \mathbf{i}+Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose P and Q have continuous first-order derivatives and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ throughout D , then F is conservative.
(7 points) Let D be a region bounded by a simple closed path C in the $x y$-plane. Use Green's Theorem to prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} d y, \bar{y}=-\frac{1}{2 A} \oint_{C} y^{2} d x
$$

where A is the area of D.

